	TABLE 11
5-Substituted	5-(2-NAPHTHYL)HYDANTOINS

				Found, % ^b
R	Mp, °C ^a	Yield, %	C H N	C H N
CH_3	247 - 248	83	69.99 5.04 11.66	70.31 4.97 11.53
$n-C_{3}H_{7}$	239 - 240	78	$71.62 \ \ 6.01 \ \ 10.44$	$71.84 \ 6.09 \ 10.30$
i-C3H7	261 - 263	72	\dots 10.44	$\dots 10.29$
$n-C_4H_9$	201-202	76	$72.32 \ 6.43 \ 9.92$	72.21 6.49 9.85
i-C ₄ H ₉	217 - 218	69	9.92	\dots \dots 10.04
sec-C ₄ H ₉	256 - 257	57	· · · · 9.92	10.01
$t-C_4H_9$	292–293 dec	43	72.32 6.43 9.92	71.99 6.42 10.09
$n-C_5H_{11}$	188-189	72	72.95 6.80 9.45	72.96 6.66 9.39
i-C ₅ H ₁₁	244 - 245	87	9.45	9.32
n-C ₆ H ₁₃	177 - 178	85	9.03	$\dots 9.01$
$n-C_{7}H_{15}$	167 - 168	95	8.63	8.74
$n-C_8H_{17}$	169-170	64	8.27	\dots \dots 8.24
$n-C_{10}H_{21}$	167 - 168	73	7.65	\dots 7.62
n-C ₁₂ H ₂₅	169-170	70	\dots 7.10	, 7.09
$C_{\delta}H_{\delta}$	281 - 282	63	\dots 9.27	\dots 9.32
$1 - C_{10}H_7$	323 - 324	68	78.39 4.58 7.95	77.82 4.29 8.33
$2 - C_{10}H_7$	313 - 314	64	78.39 4.58 7.95	78.39 4.51 7.92

^a All melting points were determined by the capillary method and are corrected. ^b Carbon, hydrogen, and nitrogen microanalyses were performed by the Huffman Laboratories, Inc., Wheatridge, Colo.

Heterocycles. II.¹ Synthesis of 3-Carbomethoxy-3-methyl-7,8-benzothiochromanone

TOSIO MORIWAKE

Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama, Japan

Received December 4, 1965

During an attempted syntheses of 11-thia steroid homologs, the title compound was synthesized as an intermediate. The method of synthesis is analogous to the route used by Bachmann, et al.,² for the preparation of equilenin.

Experimental Section

Methyl 7,8-Benzothiochromanone-3-glyoxalate.-To a suspension of 3.2 g of sodium methoxide in 40 ml of benzene was added 7.1 g of dimethyl oxalate, and the mixture was refluxed for 10 min. To the ice-cooled solution was added a solution of 6.4 g of 7,8-benzothiochromanone³ in 70 ml of benzene over a 10-min period, and the mixture was stirred at room temperature for 4 hr. Within a few minutes a light red solution resulted, which soon deposited a light yellow precipitate. The mixture was hydrolyzed with 100 ml of water. The benzene solution which separated was extracted twice with 60 ml of 2% NaOH solution and the combined aqueous solution was acidified with dilute HCl. The light yellow crystals were filtered off and dried. Recrystallization from ethanol gave 7.3 g (81%) of glyoxalate as pale yellow clusters which melted at 107-109°. Further recrystallizations from alcohol gave a pure sample of mp 108.5-109.5°.

Anal. Calcd for C₁₆H₁₂O₄S: C, 64.00; H, 4.03. Found: C, 64.08; H, 4.10.

3-Carbomethoxy-7,8-benzothiochromanone.--- A mixture of 7.0 g of the above-mentioned glyoxalate and 3.5 g of powdered soft glass was heated at 180-200° for 1 hr with occasional stirring. After cooling, the dark brown product was dissolved in a mixture of benzene and acetone (1:1), and the solution was decanted from the glass. The solution was evaporated, and the residue was digested with methanol, whereupon crystallization took place. Recrystallization from ethyl acetate gave 5.1 g of product, mp 114-116°, as yellow needles. Anal. Calcd for $C_{15}H_{12}O_{3}S$: C, 66.17; H, 4.44. Found:

C, 66.21; H, 4.52.

3-Carbomethoxy-3-methyl-7,8-benzothiochromanone.-A warm solution of 3.6 g of 3-carbomethoxy-7,8-benzothiochromanone in 30 ml of benzene was added to a solution of sodium methoxide prepared from 1.6 g of sodium and 30 ml of methanol. The mixture was refluxed for 2 hr, cooled, and treated with 4 ml of methyl iodide. After 1 hr at room temperature, an additional 4 ml of methyl iodide was added. The resulting mixture was stirred at room temperature for 30 min, then refluxed for 2 hr, cooled, neutralized with acetic acid, and evaporated nearly to dryness. The residue was treated with benzene and water, and the organic solution after separating was washed with 5% NaOH solution with water, dried, and evaporated. Recrystallization of the residue from ethanol gave 3.5 g (92%) of the product, mp 112-113°, as tan needles.

Anal. Caled for C₁₆H₁₄O₃S: C, 67.12; H, 4.93. Found: C, 67.30; H, 5.14.

Synthesis of Some 3-Arylacetyl- and 1,3-Di(arylacetyl)indoles¹

THOMAS E. YOUNG AND MICHAEL F. MIZIANTY²

William H. Chandler Chemistry Laboratory, Lehigh University, Bethlehem, Pennsylvania

Received December 13, 1965

The recent demonstration of anticonvulsant activity³ of certain 3-acylindoles has prompted us to report eighteen new 3arylacetyliudoles, of which compounds Ia-n (Table I) were all prepared by acylation of the corresponding indolylmagnesium bromides with the appropriate arylacetyl chloride, a method first described by Oddo⁴ and briefly elaborated by others.⁵ The 1,3diacyl derivatives (II) were also produced as coproducts, and could be obtained pure in several cases (Table II). The 3-arylacetyl-2-methylindoles (Io-r, Table I) were prepared by reac-

⁽¹⁾ T. Moriwake, J. Med. Chem., 9, 163 (1966).

⁽²⁾ W. E. Bachmann, W. Cole, and A. L. Wilds. J. Am. Chem. Soc., 61, 974 (1939); 62, 824 (1940); see also ref 1.

⁽³⁾ F. Krollpfeiffer and H. Schultze, Ber., 56, 1821 (1923).

⁽¹⁾ This investigation was supported by research Grant C-4425 from the National Cancer Institute, National Institutes of Health, U. S. Public Health Service.

⁽²⁾ Abstracted in part from the Ph.D. Dissertation of M. F. M., Lehigh University, 1963.

⁽³⁾ H. H. Keasling, R. E. Willette, and J. Szmuszkovicz, J. Med. Chem., 7.94 (1964).

⁽⁴⁾ B. Oddo and L. Sessa, Gazz, Chim. Ital., 411, 234 (1911).

⁽⁵⁾ N. P. Buu-Hoi, E. Bisagni, and C. Routier, J. Chem. Soc., 625 (1957); S. Takagi, A. Sugii, and K. Machida, Pharm. Bull (Tokyo), 5, 617 (1957); T. E. Young, J. Org. Chem., 27, 509 (1962); T. E. Young and M. F. Mizianty, ibid., 29, 2030 (1964).